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Adaptive control of unknown unstable steady states of dynamical systems
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A simple adaptive controller based on a low-pass filter to stabilize unstable steady states of dynamical
systems is considered. The controller is reference-free; it does not require knowledge of the location of the
fixed point in the phase space. A topological limitation similar to that of the delayed feedback controller is
discussed. We show that the saddle-type steady states cannot be stabilized by using the conventional low-pass
filter. The limitation can be overcome by using an unstable low-pass filter. The use of the controller is
demonstrated for several physical models, including the pendulum driven by a constant torque, the Lorenz
system, and an electrochemical oscillator. Linear and nonlinear analyses of the models are performed and the
problem of the basins of attraction of the stabilized steady states is discussed. The robustness of the controller
is demonstrated in experiments and numerical simulations with an electrochemical oscillator, the dissolution of
nickel in sulfuric acid; a comparison of the effect of using direct and indirect variables in the control is made.
With the use of the controller, all unstable phase-space objects are successfully reconstructed experimentally.
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[. INTRODUCTION bations[4]. They use reference signals that require knowl-
) ) ) _ edge of the location of the unstable fixed point in phase

Control theory is one of the central subjects in engineerspace. However, for many complex systems the location of
ing science. Despite the fact that engineers and applied matkhe fixed point, as well as exact model equations, are not
ematicians have been dealing with control problems for accessible. In this case, adaptive, reference-free control tech-
long time and a huge amount of knowledge has been gathriques, capable of automatically locating the unknown
ered[1-4], some new ideas were introduced by physicists asteady state, are preferable.
decade agd5] and have boosted an enormous amount of A straightforward idea to attain an adaptive stabilization
work on control problemg6-9]. These new concepts are of the unknown steady state may be based on derivative con-
based on the observation that chaotic dynamical systenisol [13,14. In this approach, the control perturbation is de-
contain a huge number of unstable periodic orbits. Theséved from the derivative of an observable. Such a perturba-
orbits represent genuine motions of the system and can @#n does not influence the steady-state solutions of the
stabilized by applying tiny control forces. Hence chaotic dy-Original system, since it vanishes whenever the system ap-
namics opens the possibility to use flexible control techproa}ches the steady statg. In practice thls method is sen5|t|ve
niques and stabilize quite distinct types of motion in a singlel® high-frequency fluctuations because it requires a differen-
system with small control power. A convenient chaos controfiation of a signal. To avoid this shortcoming the derivative
technique successfully implemented in various experiment8@y e replaced by a finite difference. Such an idea leads to
is based on delayed feedback perturbatiaf]. However, & time-delay feedback control method. In RELO] it is
Nakajima[11] proved there is a topological limitation with shown that th_e_ _t|me-delay feedback meth_od_ls md_eed ca-

; : . o . able of stabilizing not only unstable periodic orbits, but
this technique, namely that it cannot stabilize torsmn—freeg

odic orbits. which h rerized b ad b nstable steady states as well. These features of the time-
periodic Orbits, which are characterized by an oad humber o elay feedback control method are discussed in more detail
real positive Floquet exponents. It has been recently show

- ) OW[H, Refs.[15,16. The theory of the method is rather compli-
that an additional unstable degree of freedom introduced intQ,.  since the time-delay feedback involves an infinite
a feedback loop can overcome this limitatigr?]. . ... humber of additional degrees of freedom.

Although the field of controlling chaos deals mainly with e\ ertheless, the problem of adaptive stabilization of
the stabilization of unstable periodic orbits, the problem off, g points is simpler than the problem of stabilizing un-
C°””°”'T‘9 the system dynamics on upstable fixed POINtSiaple periodic orbits and can be successfully solved without
(nonoscillatory solutionscould be more important for vari-

; o . ._the use of time-delay signals. Any adaptive controller, of
ous technical applications. Controlling the system dynamicg, \rse “should have inherent degrees of freedom. However,
on unstable steady fixed points is of practical importance i

. ST . N~ ance 1Mo the fixed points an adaptive controller can be designed on
experimental situations where chaotic or periodic oscﬂlauon§he basis of a finite-dimensional dynamical system. The sim-
cause degradation in performance. Usual methods of clasgheg example of such a controller may utilize a conventional

cal control theory are based on proportional feedback pertu low-pass filter that has only one inherent degree of freedom.
The filtered output signal of the system estimates the location

of the fixed point, so that the difference between the actual
*Electronic address: pyragas@pfi.lt; http:/pyragas.pfi.lt and filtered output signals can be used as a feedback pertur-
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bation. Such a simple dynamic controller has been success- +  P=Prk(y-w)
fully implemented in different experiments, including a
Mackey-Glass systenjil6], an electronic chaos oscillator
[17], and laser$18,19. In Ref.[20], a controller based on a
cascade of high-pass filters has been utilized. However, in a
short Letter[21] we have recently demonstrated that these
controllers have a topological limitation, similar to that of a
time-delay feedback controller. They cannot stabilize the y(t)
3fsad¥osé?/teeric;l\rlrl1t2 tine cljlfr?l tgtlijgzb?/\seogrrgsggeojltlc\)/eir:pl)?eerg\éilt FIG. 1. Block diagram of adaptive control of an unknown steady
) " .State of the dynamical system. LPF denotes low-pass filter.

an unstable degree of freedom in the feedback loop. In this
paper, we extend these ideas.

The rest of the paper is organized as follows. In Sec. Il, W= 0y - W) 3
we describe an adaptive controller based on a simple low,

; . - ~“that represents a simple low-pass filtePF). Herew is a
pass filter and demonstrate its performance for two S|mpI% namical variable of the controller ane® represents the

math_ematical models. We show that_ an unstable focu_s can 9: toff frequency of the filter. The output of the filter gives an
stabilized by a stable controller, while a saddle requires th%veraged input variable(t). If y(t) oscillates about the

use of an unstable controller. The e_ff|C|ency of _the Contm”ersteady-state valug' one can expect that the output variable
to stabilize unknown steady states in real physical systems

demonstrated in Sec. Ill. We consider two systems, namely U\;’(t) converges to this value. Thus the reference vafuin

pendulum driven with a constant torque and the Lorenz sysF-he proportional feedback control can be replaced with the

tem that describes a chaotic convection in a vertical IoopOUtqu variaple of the filtgr. Then_ the control parameter can
Section 1V is devoted to the problem of controlling an elec-be adjusted in the following way:

trodissolution process, the dissolution of nickel in sulfuric P =po—k(y-w), (4)
acid. We design two adaptive controllers and demonstrate ) _ ) i

their capability to stabilize unstable foci and saddle steady'nerek is the control gain. The block diagram of this control
states in the oscillating regime. We analyze how the restrictechnique is shown in Fig. 1. It is similar to the delayed
tion of the feedback perturbation influences the size of attrad®edback control techniqya], but instead of the delay line
tion basins of the stabilized steady states. Experiments at¥€ Use here a LPF. Note that the whole feedback loop rep-
carried out on the stabilization of both saddle- and focus!®S€nts a high-pass filter, since the control sidegat-w) is

sions presented in Sec. V. that filtered by the LPF. The control signal is proportional to

the derivative of the controller variabl&(y—w)=(k/w®)w.
For w®— <0, from Eq.(3) it follows thatw(t) — y(t). Thus for
Il. ADAPTIVE CONTROLLER large o the control signal becomes proportional to the de-
) i i rivative of the outputy, and our controller operates as a
Consider an autonomous dynamical system described byimpje derivative controller. However, using a simple model
ordinary differential equations we shall demonstrate that the best performance of the con-
o troller is attained for small values of the cutoff frequeney
x=f(x,p), (1) . -~
(smaller values ofw® can stabilize more unstable steady
where the vectok e R™ defines the dynamical variables and state$. Thus generally this controller cannot be considered
p is a scalar parameter available for an external adjustmenas an approximation to a simple derivative approach.

Dynamical > y(t)

We imagine that a scalar variable The closed-loop system is described by Ed$-+(4). The
_ 5 feedback perturbation does not influence the location of the
y(®) =g(x(1)) 2 original fixed pointx” since the steady-state value of the

that is a function of dynamical variablegt) can be mea- controller variablew” coincides with the steady-state value
sured as a system output. Let us suppose that=at, the  Of the observablg’. In the extended phase space of variables
system has an unstable fixed poiitthat satisfies(x”,pp) ~ (X,W), the fixed point of the closed-loop system has coordi-
=0. If the steady state valug =g(x") of the observable cor- nates(x’,y’) so that its projection on the phase space of the
responding to the fixed point were known, we could try tofree system remains unchanged. However, the perturbation
stabilize it by using a standard proportional feedback controlmay change the stability of the fixed point.

i.e., adjusting the control parameter by the lawpo—k(y Small deviationsx=x-x" andsw=w-w’ from the fixed
—y"). However, we suppose that the reference vajugs  Point are described by variational equations

unknown: Our aim is to co_nstruct a reference-free_f_eedback o% = JoX — KP(GSX — ow), (59)
perturbation that automatically locates and stabilizes the

fixed point. Such a perturbation should vanish when the sys- = WS (GoX - ow), (5b)

tem settles on the fixed point. The simplest controller satis-
fying this requirement can be constructed on a basis of onewhere J=D,f(x",po), P:Dpf(x*,po), andG=D,g(x"). Here
dimensional dynamical system D, denotes the vector derivative with respect to dynamical
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variablesx, and D, is a scalar derivative with respect to E— 04 J—————
control parametemp. The closed-loop system is linearly 14 J ;

stable if all the eigenvalues of the syst€d) are in the left 0.2

half-plane. In a previous pap¢21], we provide a theorem = < ]

concerning an important topological limitation of the above L E 0'0'.

controller. We proved that the controller with the usual LPF 0.2

cannot stabilize unstable fixed points with an odd number of -14 ;

real positive eigenvalues. To stabilize such fixed points, we . . S -0-4-| -

need an unstable controller with the negative paramefter 02 00 02 04 08 05 0.

The latter can be built up as @(C circuit with a negative  (a) Re A (b)

resistor. Similar limitation is valid even for a more general 3
case such as the one considered in this paper. It holds whe 0.4
the control parametgy and the controller variables are the 05.]
vectors[21]. s
The above limitation is related to adaptive features of the & 0.0
controller and can be simply explained by bifurcation theory. 4, ]
Suppose that in an extended phase spac®) the fixed
point (x",w") has an odd total number of real positive eigen- 0
values. Then if this fixed point is stabilized, one of such ©
eigenvalues must cross into the left half-plane on the real 1.0+
axes. Such a situation corresponds to a tangent bifurcatior gg.]
which is accompanied by a coalescence of fixed points.
However, this contradicts the fact that the feedback pertur-,
bation does not change the locations of fixed points. Thus
any feedback perturbation that does not change the locatior 92
of the fixed point can induce stabilization only through a 0.0
Hopf bifurcation, since this is the only bifurcation that oc- © 0
curs with a single fixed point without any coalescence with
other fixed points. At a Hopf bifurcation, a pair of complex-  FG. 2. (a)(c) Stabilizing an unstable focus with a stable con-

conjugate eigenvalues crosses into the left half-plane. A negroller in a model of Eqs(6). (a) Root loci of the characteristic
essary condition for this bifurcation is that the total numberequation(7) ask is varied from 0 to for y=0.5 and\®=-w°=

of eigenvalues with positive real parts must be even. Only in-0.1. The crosses and solid dots denote the location of rodts at
this case can complex-conjugate pairs move to the left half=0 andk— «, respectively(b) Dependence of the real part of ei-
plane. That is why we need an unstable controltet< 0) genvalues on the control gaift) Domains of stability of the fixed
when stabilizing a steady state with an odd number of reapoint in the parameter plarig, v°) for different values oh°. (d)<(f)
positive eigenvaluege.g., a saddleand we can use a usual Stabilizing an unstable saddle with an unstable controller in a
LPF with w®> 0 for the stabilization of a steady state with an simple model of Eqs(8) for A°=1 and\®=0.1. Characteristics are
even number of real positive eigenvalu@sg., an unstable similar to those presented in the left column of the figure.

focus.

We demonstrate a mechanism of adaptive stabilization gbose thaty is an observable and the control parameter
unknown steady states with two simple mathematical exinfluences only the second equation of the controlled system.
amples. The first example describes the control of an un- To analyze the stability of the fixed poitt”,y",y") in an
stable focus, extended phase space,y,w), it is convenient to shift the

. « « origin of the coordinate system to the fixed point by replac-
X=yx=x)=(y=y), (63) inggthe variable@(:x—x*,ygy:y*, Sw=w-y". Iﬂ theseyvaﬁ-
ables, the transfer functions of the system and controller,
y=x=x)+¥y-y)+p, (6b)  respectively, are G(s)=(s-99)/[(s-y)2+1] and H(s)
=ks/(s—\°). The eigenvalues of the fixed point are deter-
w=\(w-y), p=—-kw-y). (60) mined by poles of the closed-loop system transfer function,

) i.e., by the equation 1H(\)G(\)=0,
Equations(6a) and (6b) represent a normal form of a focus;

p is a control parameter. Fgg=p,=0, the location of the N A=

fixed point is(x",y"). We imagine that these coordinates are 1+ k)\ “A°( -2+ 1 =0. (7)
unknown. Here time is normalized to the period of the focus

such that its eigenvalues a)g ,=y°+i. Parametery>>0 A mechanism of stabilization is evident from a root loci dia-
defines the degree of instability of the focus. Equaiiée)  gram presented in Fig(@). The poles and zeros of the prod-
describes an adaptive controller. Instead of the cutoff freuct H(\)G(\) define the location of the eigenvalues for
quency o, we introduced here the parametér=-w®<0 =0 andk— <, respectively. Fok=0, there are two complex-
that represents the eigenvalue of the free controller. We sumonjugate eigenvalues=\j ,=yi in the right half-plane,

k

~ 5
=
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corresponding to the free system, and one real eigenvalusach other on the real axes, then collidekatk,;=A5+\°
A=\’=-C in the left half-plane, corresponding to the free —2\\S\® and pass to the complex plane. Rtky=\S+\S,
controller. Ask is increased, the eigenvalue of the controllerthey cross symmetrically into the left half-plattéopf bifur-
moves to the left. The complex-conjugate pair of the systentation). At k=k,=AS+\°+ 2V\S\°, we have again a collision
roots initially moves to the left as well, and ferky, these  on the real axes and then one of the roots moves towards -
roots cross into the left half-plangiopf bifurcation, then  and another approaches the origin. Fork,, the closed-
return, and fork=kg, cross into the right half-plane again loop system is stable. An optimal value of the control gain is
(another Hopf bifurcation Afterwards, they collide on the k, since it provides the fastest convergence to the fixed point.
real axis and one of them moves to the origin of the complex Note that both models considered here are linear. Thus the
A plane, and another to the positiar y°. The dependence defined stability criteria are global, i.e., they are valid for any
of the real parts of eigenvalues on the control deisishown initial conditions. For nonlinear systems, the linear stability
in Fig. 2(b). In the intervalky; <k<kg,, the real parts of all guarantees the stabilization of the steady state only for the
eigenvalues are negative and the steady state of the closeditial conditions that are close to the fixed point. In a real
loop system is stable. Figur€ shows the domains of sta- physical system, the domain of attraction of the linearly sta-
bility of the closed-loop system in the parameter pléne~) bilized fixed point depends on specific nonlinear properties
for different values of the cutoff frequenay®=-\° of the  of the system. In Sec. IV we consider this problem in more
low-pass filter. The properties of the controller are improveddetail.
by decreasing the cutoff frequenaf. Smaller values of°

can stabilize more unstable foci. However, the controller
cannot stabilize a strongly unstable focus whete 1. This

limitation is due to the configuration of the coupling of the |, this section we illustrate the efficiency of the adaptive
feedback force. The feedback perturbs only one varige  coniroller for two physical models. First we use an unstable
(6b)] of the focus. For this coupling configuration, the samec,nirolier to stabilize a saddle steady state of a pendulum
limitation is valid in the case of proportional feedback con-yiyen by a constant torque. Then we demonstrate an adap-

trol. Note that this limitation is not inherent to the control e stapilization of all unstable steady states in a chaotic
algorithm. For a fixed coupling configuration, one can designow described by the Lorenz system.

a higher-order adaptive controller that can stabilize any focus
with arbitrary large parametey®.

The second example illustrates the use of an unstable con- A. Control of a pendulum driven by a constant torque
troller in the case of an even number of real positive eigen-
values. The simplest representative of such a type is a oney,
dimensional dynamical systeg=\%y-y’) that has an
unstable fixed poing” with only one real positive eigenvalue
A5>0. The system controlled by the adaptive controller is

IIl. APPLICATION TO PHYSICAL MODELS

Consider a simple mechanical example of a nonlinear os-
ator: a pendulum driven by a constant torque. The equa-
tion of motion in dimensionless form reads

described by the equations +pO +sin®=y. (10
y=Ay-y") +p, (8a) Here ® denotes the angle between the pendulum and the

downward vertica(see the inset in Fig.)3 8=b/mL%%gl/2

W=A(w-y), p=-kw-y). (8b) andy=I"/mgL are the dimensionless parameters, wheiis

the mass and is the length of the pendulunb,is a viscous
Now the transfer function of the system @&s)=1/(s—\%  damping constany is the acceleration due to gravity, aid
and the eigenvalues of the closed-loop system satisfy ais an applied constant torque. The time is normalized to a
equality periodT=(L/g)*? of small oscillations of the free pendulum.
For small torquey<1, the pendulum has two equilibrium

1 .
1+k R (9) steady states whose coordinates(@, ®) phase plane are
A=A (®s,00 and (®,,0), where O =arcsiny and O,=x
that is equivalent to the quadratic equatiad—(\S+\¢  —arcsiny. In these steady states the gravity balances the ap-

—Kk)N+\3\=0. The stability conditions of this characteristic plied torque. The first is a stable node or spiral and the sec-
equation arek>\S+\S, \S\°>0. We see that the stabiliza- ond is a saddle point. Our goal is to stabilize the saddle point
tion is not possible with a conventional low-pass filter since(®u,0) by using an unstable adaptive controller based on the
for any AS>0, A< 0, we havex\°< 0 and the second sta- RC circuit with a negative resistance.

bility criterion is not met. However, the stabilization can be ~ We suppose that an observable is the afyland that we
attained via an unstable controller with a positive paramete¢an control the system by applying a feedback perturbation
\® (or negative cutoff frequencw®). The right column of to the torquey. Then our controlled system is

Fig. 2 shows similar characteristics to those of the previous

model. The root loci diagranjFig. 2(d)] demonstrates a 0=0, (119
mechanism of stabilization. Fd&=0, the eigenvalues ane

and \¢, which correspond to the free system and free con- i

troller, respectively. With the increase &f they approach Q=-B0-sin®+ y+k(w-0), (11b
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] g =19 coincides with the current value of the angle(t.)
06+ r =0(t,). The parameters are chosen in such a way that the
0.4 . uncontrolled pendulum is in a multistable regime: depending
1 : on initial conditions it can settle into either a rotating solu-
< 0.2 y ) . . i
] t, | m tion where it whirls over the top, or a stable rest stée
0.0 M where the gravity balances the applied torque. For the same
02 values of parameters, there is a coexisting unstable rest state

1 0, of a saddle type. Figure(8) shows how the rotating
(a) k pendulum reaches this state, after applying the feedback per-
turbation. As is seen from Fig(®, the perturbation vanishes

& as the stabilization of the saddle steady state is attained. Re-
a9 member that our controller is reference-free, i.e., it does not
? utilize knowledge of the position of the fixed point. Thus it
-1 . . . : . . can be usec_i for a track_ing procedure. The controlled system
0 50 100 150 will remain in the stabilized saddle state even under a slow
(b) t variation of the applied torque.
54
2 0 B. Control of the Lorenz system
- Now we consider the control of stability of the steady
51 v T T T y 1 states in a chaotic system described by the Lorenz equations
© 0 50 . 100 150 [23]
FIG. 3. Stabilizing a saddle steady state of the pendulum driven x=oly=x), (143
by a constant torqu&a) Eigenvalues of the controlled pendulum as )
functions of the control gaik. (b) The dynamics of thg projection y=IX-y =Xz (14b)
of the pendulum(c) The dynamics of the perturbation. The param-
eters are8=0.2, y=0.7,\°=0.1. In(b) and(c), the feedback per- z=xy-bz (140
turbation is switched on at the momentt.=20 and the value of
control gain isk=2.6. Originally this model has been derived and analyzed in the

context of turbulent convection. Fortunately, there is a simple
S physical realization of the Lorenz model: convection in a
wW=Aw-0). (110 \ertical loop(see the inset in Fig.)4[24,25. The fluid is
The controller can stabilize the saddle steady state of thBeated from below, and for strong enough heating, convec-
pendulum if the fixed point®,,0,0,) of the controlled sys- tion sets in. The motion is first steady, with a constant veloc-
tem (11) in the extended phase space of variatfl@gsQ,w) ity V. Clearly, due to symmetry, motions in both the clock-
is stable. Linearization of the systef@l) about this fixed —Wise and counterclockwise directions are possible. If the

point yields the characteristic equation heating from below increases, the steady rotation becomes
unstable and chaotic reversions of the flow are observed. In
N+ (B=AINZ+ (K= V1 -9 = \BN + A1 -2 =0. the context of the above experiment, the variables of the

(12) Lorenz equations have the following physical meanixdgs
proportional to the flow velocity, y is proportional to the
The fixed point is linearly stable if all the roots of E{.2) horizontal temperature differencg;—T,, and z is propor-
have negative real parts. Using the well-known Routh-tional to the vertical temperature differen€g-T,. o, b, and
Hurwitz criteria[22], one obtains the following stability con- r are dimensionless parameters. When analyzing the Lorenz
ditions: system, the parametessandb are usually fixed to the val-
. T3 . . ues 10 and 8/3, respectively. The parametisrproportional
k>ko= BN +V1=»(B-2)], 0<A°<B. (13) g the heating rate at the bottom and is usually taken as a

As is expected from a general theory, the necessary stabilit@in control parameter. .
condition is\®>0, i.e., the saddle steady state can be stabi- FOr 0<r<1, the Lorenz system has a unique stable
lized only with an unstable controller. steady statéa stable nodeat the origin(x,y,2)=(0,0,0.
Figure 3a) shows the real parts of eigenvaluess func-  Forr>1, the origin becomes a saddle. This means that the
tions of the control gairk. Similar to the above simple ex- Mmotionless state of the liquid loses stability. Just at this bi-
amp|e’ the real positive eigenva]ues of the pendu|um anajrcation two additional symmetrical stable steady states
controller collide on the real axis, pass to the complex plane([b(r - 1)1*2,[b(r-1)]¥2,r-1) and (-[b(r—1)]"2,~[b(r
and atk=k, cross into the left half-plane. The results of —1)]*2,r—1) appear. They correspond to the stationary mo-
direct numerical integration of the nonlinear systétt) are  tion of the liquid with constant velocity. Far>r,=o(o+b
presented in Figs.(B) and 3c). The initial condition of the +3)/(oc—b-1), these fixed points lose their stability and be-
controller at the moment of switching on the conttslt, come unstable spirals. Now a chaotic motion of the liquid is
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’.;0 0 5 10 15 20 25 30 35 40 45 50
E (© t
X 5]
] FIG. 5. Stabilizing an unstable spir&donvective state with a
-10 L L — T 1 constant velocity of the fluidof the Lorenz system with a stable
(©) 0 0 2 t % 0 &0 controller. The values of the parameters are the same as in Fig. 4,

except A\ and k, which that here are equal to -4 and 20,
FIG. 4. Stabilizing a saddle steady statenconvective stajef respectively.
the Lorenz system with an unstable controli@). Eigenvalues of

the controlled Lorenz system as functions of the control gait) A3+ (+1-\+ k)}\z +[o(1 =1 =AS+K) = A\
The dynamics of the variable.(c) The dynamics of the perturba-
tion. The parameters are=10,b=8/3,r=28,\°=1. In(b) and(c), +o\(r-1)=0. (16)

the feedback perturbation is switched on at the monteityt=30.

The initial condition of the controller at this moment coincides with The necessary condition of stability of the polynontit) is

the observablg, w(t;)=y(tc). The value of control gain i&=>55. o\%(r-1)>0. The latter can be satisfied only with an un-
stable controllerA®>0. Using the Routh-Hurwitz criteria

observed in the system. Our aim is to stabilize all unstabl¢22] one can obtain the threshold of the stabiliky For o

steady states of the system in a chaotic regimerfer, =10,r=28, and sufficiently smalk® the stability condition
using the above adaptive dynamic controller. reads

We suppose that the observableyiand we can influence
the temperature differenc&—T,; by additional heating of k> Kko(\®) = 27 + 1.81\°. 17

the loop in the horizontal direction. Then we analyze the
controlled Lorenz system described by the following equarigure 4a) shows the three largest real parts of eigenvalues

tions: as functions of the control gak The horizontal line in this
, figure corresponds to the eigenvalne-b that is indepen-
X=o(y=x), (158 dent ofk. The results of direct integration of the nonlinear
system(15) are shown in Figs. @) and 4c). Initially the
y=rx—y-xz+kw-y), (15b) system is in a chaotic regime. When the perturbation is

switched on, the system is forced to the rest state. Whenever
the stabilization of the rest state is attained, the feedback

z=xy-bz, (150 perturbation vanishes.
Similar results of adaptive stabilization of the unstable
WA W-Y). (150) spirals ([b(r—1)]¥2, £[b(r—1)]¥2,r-1) are shown in Fig.

5. These fixed points correspond to the stationary motion of
We start with the problem of stabilizing the motionlessthe liquid in clockwise and counterclockwise directions with
steady state, i.e., the saddle fixed point at the origin. Thishe constant velocity. They have identical stability conditions
fixed point has one positive and two negative real eigenvaland, depending on initial conditions, the system can be sta-
ues. Thus it can be stabilized only with an unstable controllebilized to either of these states. The unstable spirals have one
with the positive parametex,. Indeed, linearizing the system real negative eigenvalue and a complex-conjugate pair of
(15) about the origin(x,y,z,w)=(0,0,0,0, we obtain that eigenvalues with the positive real part. Thus we use a stable
one eigenvalue is independent lofand is negative\=-b, controller for the stabilization. Physically, this stabilization
and three remaining eigenvalues satisfy the characteristimeans that chaotic convection of the system is transformed
equation into regular convection with a constant velocity of the liquid.
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We emphasize that this state can be maintained by applying

only tiny feedback perturbations. 14
IV. CONTROL OF AN ELECTROCHEMICAL 04
OSCILLATOR o

Lastly, we demonstrate the use of an adaptive controller -1

with control in an electrodissolution process, the dissolution

of nickel in sulfuric acid. A model for the galvanostatic dis-
solution (constant currenthas been developed by Haiet

al. [26]. A form of this model, modified for potentiostatic (@)
(constant applied potentjabperation, describes the steady-
state dependence on the potential, bistability, and periodig,,
oscillatory behavior. The dimensionless model reads

-2

60

FIG. 6. Steady-state characteristics of the chemical reaction ob-
ned from Eqs(21). The dashed line represents an unstable spiral,
the dotted line corresponds to a saddle, and the solid line is a stable
e=(V-e)/R-fy(e)(1-0), (189 node. The values of the parameters &e50, I';=1072, b=6

X 1075, C,=1600,C=10"3, anda=0.3.

rl® =f,(e)(1-0) - f,(e)0. (18b) eten. The steady characteristies vs Vy andi vs V, are
) ) ) ) ) shown in Fig. 6. We see that in a certain interval of the
Heree is the dimensionless potential of the Ni electrode andhotentialV, the system has three coexisting fixed points. The
is the surface coverage of NiO+NiOH. The functions injinear analysis of these points shows that the lower branch in

the above expressions are Fig. 6a) corresponds to an unstable spiral, the middle branch
exp(0.5) represents a saddle, and the upper branch is a stable node.
flle)=————, (199 Now we discuss the bifurcations that appear in the system
1 +Crexple) when varying the control paramet®p. The phase portraits
of the system for different values &f, are shown in Fig. 7.
bC.exp(2e) The results are presented in the delayed phase-space coordi-
fo(e) = C.C+expo)’ (199 nateg(i(t),i(t- 7)) using the observabiét). Such a choice of
n the phase-space variables allows us to compare the numerical
fa(8) = Cyf4(6) +a exple). (199 results with the experimental ones.
An observable is the current through the Ni electrode, 15 1.5
i=(V-e/R, (20) c 14 £14 f
where R is the series resistance of the cell, avids the 1.3 139 ¢
circuit potential—the main experimentally controlled param- 12 15 i 12 15
eter. We shall control the system dynamics by varying this (@) ’ i(t;r) ’ (b) ’ i(t;r) )
paramete’V=V,+ 6V with the feedback signabV derived
from the observablé(t). But first we consider the steady-
state solutions and dynamical properties of the free system, 15 15
when V=0, i.e.,V=Vy=const. o4 = 1.4 A°
= - n
A. Analysis of the system without control 1.3 . 1.3
For a fixed voltageV=V,, the steady-state solutions 13 14 15 43 14 15
(eg,0¢) of the systen(18) are determined by equations () i(t-c) (d) i(t-1)
(Vo —ep)/R~-f3(p)(1 - 0p) =0, (219 .
15 LY 15 .
f1(e0)(1 = Op) — f(€)@,=0. (21b) =14 14
These equations are linear with respect to variablgand 13 13
®,. Thus we can easily obtain explicit expressions ——T ——T
13 14 15 13 14 15
f1(ep) i(tr) i(t-r)
=0¢(€0) =7 . (223 O (f) "
°TPI e + faleo)
FIG. 7. Phase portraits of the free chemical system presented in
_ _ fo(ep)fa(ep) delayed coordinatels=0.94 for different values of the voltagé:
Vo= Volep) =€+ Rm (22b) (3 62.5,(b) 64.5,(c) 66.5,(d) 68.5,(€) 74.5,(f) 76.5. The circles,

triangles, and squares denote unstable spirals, saddles, and stable
that define the steady-state characteristics of the system innades, respectively. The values of the parameters are the same as in
parametric form(ey is interpreted as an independent param-Fig. 6.
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For small valued/,, an unstable spiral is the only steady
state of the system. This spiral is surrounded by a stable limit
cycle that corresponds to chemical oscillatidiég. 7(a)].

The increase ofV, leads to a saddle-node bifurcation at
which two additional fixed points appe@fig. 7(b)]. Then
the saddle collides with the limit cyclghomoclinic bifurca-
tion, Fig. 7c)], and the limit cycle disappeaf§ig. 7(d)].
The further increase 0¥, leads to another saddle-node, bi-
furcation [Fig. 7(e)], and the only one fixed point, a stable
node, remains in the systejRig. 7(f)].

Next, we fix the value of the voltageé,=63.888[in Fig. '
6(a) this value is marked by a vertical dotted l|[n@hen the (b) 0 100
system has two unstable fixed points: a saddle and an un-
stable spiral, whose coordinatés,,®,) are (0.0,0.0166 ]
and (-1.7074,0.452), respectively. We consider the prob- > g
lem of stabilizing these unstable states by using two different © ]
strategies. In the first, the value of the potenéias taken as 0 V\’\
a control signal. We suppose that this value can be recon- 0 ' 100 ' 200 ' 200
structed from the observabieln the second, we design the (©) t
controller that uses directly the observahle

I i 1
200 300
100 -

FIG. 8. Stabilizing a saddle steady state of the chemical system
using the potential as a control signéd) Eigenvalues of the con-
trolled chemical system as functions of the control daiiib) and

Since the input variable, the voltage perturbs only the (c) The dynamics of the current and perturbation, respectively. In
first differential equation of the systef8), it is natural to  (b) and(c), the feedback perturbation is switched on at the moment
construct the perturbation in such a way that it introduces &=t.=93. The parameters of the controller are=0.02,r=60, and
negative feedback to the potentilIf the value of the cir- k=3.9.
cuit resistancer is known, then the value of the potental
can be reconstructed from the observatded input variable  Thus the perturbation added to the voltage is equal to zero,
V: e=V-iR. However, the exact valuR is unknown in an and from Eq.(24) we obtain thatV=V,. The steady-state
experiment. Then we propose to use the differégre¥ —ir value of the controller variable isvy=Vy(1-r/R)+eyr/R
as an effective control signal, wherés an adjustable control and the corresponding fixed point of the controlled chemical
parameter that need not be exactly equal to the circuit resisystem in the whole phase space of varialile® ,w) is
tanceR. We shall see that the stabilization can be attained fo(e,, ®,,w,), wheree,,®, are the steady-state solutions of
r#Ras well. the free chemical system. Linearizing Eq48) and (23)

Here we restrict ourselves to the problem of stabilizingahout this fixed point, one can obtain the stability conditions.
the saddle steady state that requires use of an unstable cqrigure §a) shows the eigenvalues of the saddle fixed point
troller. We define an unstable controller for an effective po-(e;,®,,w,)=(0.0,0.1666,-12.7776taken at the voltage

B. Stabilization using the potential as a control signal

tential@ by the differential equation V,=63.888, as functions of the control galn For k> k,
dw ~2.97, the saddle steady state of the free systems becomes
ot =N(w=8) =AS(w—=V+ir), (23)  stable due to introduced feedback control. This result of a

linear theory is confirmed by direct integration of nonlinear

wherew is a dynamic variable of the controller andis a  Eds.(18) and(23). Figures 8b) and &c) show the dynamics
positive constant. Now we feed back the control perturbatior?f the current and perturbation, respectively, ksr0.02. At

SV=k(w-V+ir) to the adjustable parameter the moment of switching on the contrott,~ 93 the initial
. condition for the controller isv(t;) =€(t;). Note that the pa-
V=Vo+k(w+ir =V). (24)  rameterr is chosen not equal t& (r=60 andR=50). Al-

though an effective potenti@ does not coincide with the
real potentiale, the stabilization of the fixed point is still
possible.

Solving this equation together with E¢R0), we obtain the
expression for the voltage,

_ VO + k(W - e/R) (25)
1+k(1-r/R) "’ C. Stabilization using the current as a control signal

wherek is the control gain. Thus the controlled chemical The controller described in the preceding paragraph is
system is defined by differential equatioqid8) and(23), and  based on reconstruction of the potentsdnd implementa-
algebraic expressiond9), (20), and(25). Note that the in- tion of a negative feedback to this variable. Now we consider
troduced controller does not change the steady-state solanother controller that does not require any reconstructions
tions of the free chemical system. Indeed, the stationary statf dynamic variables and is particularly convenient for ex-
of the controller is determined by the equality-V+ir=0.  perimental implementation. We take the observafileas a
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control signal, then transform it by an adaptive dynamic con- 0.5
troller and feed back the output to the control paramétéer. -
Specifically, we define an adaptive controller by the differ- g 0o
ential equation 1
d R S S S S S
w
— =\(w-i), (26) @) k
dt 1
1.4
wherew is a dynamic variable of the controller and is a
characteristic parameter. Then we feed back the control per- 1.3
turbation 8V=k(i—w) to the input voltageV, 19 . .
) 0 50 100 150 200
V:VO+(.S\/:VO+k(|_W), (27) (b) : t
wherek is the control gain. Substituting this expression in > 0 AV
Eq. (20) and solving it with respect to an unknown current, ©
we obtaini=(Vy—e—kw)/(R-Kk). Then from Eq(27) we get -1+
the following expression for the voltage: - T T T - .
0 50 100 150 200
(c) t
Vo—e-wR
V=Votk——— (28) _ |
R-k FIG. 9. Stabilizing an unstable spiral of the chemical system

using the current as a control signéh) Eigenvalues of the con-
We see that voltage perturbation is singular kstR. The  trolled chemical system as functions of the control dailb) and
controlled chemical system is defined by the differential(c) The dynamics of the current and perturbation, respectively. In
equationg18) and(26), and algebraic expressio(k9), (20), (b) and(c), the feedback perturbation is switched on at the moment
and (28). This controller, as well as that considered beforet=t.=90. The parameters of the controller axe=-0.01 andk
does not change the steady-state solutions of the free chensi49.9.
cal system. Whenever the controller attains the steady state,
dw/dt=0, the voltage perturbatio®V=k(i—w) vanishes.
The steady-state value of the controller variable coincides
with the steady-state value of the current of the unperturbed The linear stability of a fixed point of dynamical system
systemwy=iy=(Vy—¢€y)/R. Thus the fixed point of the con- guarantees its stabilization only for initial conditions that are
trolled chemical system in the whole phase space of variclose to the fixed point. Important questions arise concerning
ables(e,®,w) is (gy,0,,ip). Linearizing Eqs(18) and(26)  what is the basin of attraction of a linearly stable fixed point
about this fixed point, one can obtain the dependence of it# the phase space of nonlinear system and how to control
eigenvalues on the control galk For the unstable spiral the size of this basin. These questions are especially signifi-
(e9,0,ip)=(-1.7074,0.4521,1.31})9taken at the voltage

D. Restriction of perturbation and basins of attraction

V,=63.888, this dependence is shown in Figa)9 For 0.5+
k>ky=46.2, the initially unstable spiral becomes stable.
Figures 9b) and 9c) show the results of a nonlinear analy- < 00
sis. The dynamics of the current and perturbation are ob- ; Y
tained by direct integration of a nonlinear system of Egs. 0.5 — )
(18) and (26). At the moment of switching on the contrbl (@) 0 10 20 3|? 40 50 60
=t.=90, the initial condition for the controller is taken to be 154
equal to the currentw(t,) =i(t.). Again, the current of the |
controlled chemical system asymptotically converges to the — 1.4+
unperturbed steady-state valiyggand the perturbation van- 1
ishes. 131
To stabilize the unstable spiral, we used a stable controller 0 ' 50 100 150
with the negative parametex®=-0.01. Figure 10 shows ()
similar results of stabilizing the saddle poifey,®g,ip) 0.304
=(0.0,0.0166,1.27778 taken at the same voltag®/, 0.15.] A
=63.888. However, now an unstable controller with the posi- 2 ]
tive parametei®=0.01 has been used. 0.00 |
Note that the controller considered in this subsection has -0.15 : , : .
0 50 ¢ 100 150

only one adjustable parametef, while the controller based
on reconstruction of the potential has two adjustable pa-
rameters\® andr. Thus this controller is more convenient
for experimental implementation.
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24 switching on the control at any moment independently of the
phase of oscillations. Thus the constrained perturbations can
essentially improve the control of the dynamical system in a
real experiment.

In a similar manner, we analyzed the basin of attraction
for the spiral fixed point. The analysis shows that this basin
is rather larggsimilar to that presented in Fig. ()] even
without restriction of the perturbation. The different sizes of
attraction basins for the spiral and saddle fixed points are
probably related to different controllers used for the stabili-
zation. For the saddle fixed point, we used the unstable con-
troller, while the spiral is stabilized with the stable one. The
unstable controller increases the probability of runaway that
can be avoided with a restriction on the perturbation. The
stable controller does not introduce any additional instabili-

ties to the system and the restriction of the perturbation is not
FIG. 11. Basins of attraction of the stabilized saddle steady statessential.

of the chemical systerna) without restriction of the perturbation,
and for restricted perturbation with different values &f,4 (b)
100, (c) 50, and(d) 25. The solid line, as well as in Fig. 7, repre- E. Experiment
sents the limit cycle. The circles, triangles, and squares denote the
spiral, saddle, and node, respectively.

14
@ 04
-1

-2 L |
© -15  -10 o -5 0

-15

Laboratory experiments have been carried out with nickel
dissolution to verify the applicability of the proposed con-
cant from an experimental point of view. Generally, there istrollers. A standard electrochemical cell consisting of a
no analytical approach to answer these questions. The basingkel working electrode (1 mm diam, a
of attraction can be obtained numerically by direct integraHg/Hg,S0O,/K,SO, reference electrode, and a Pt mesh
tion of the underlying differential equations for different val- counterelectrode was used. The current of the electrode is
ues of initial conditions. We performed such an analysis foimeasured with a zero resistance ammeter, and the potential
the chemical system in the case when the current is used asft the electrode is controlled with a Keithley Adwin Pro
control signal. The basin of attraction in tite,®) phase online controller system connected to the potentiostat. The
plane for the stabilized saddle fixed point is presented in Figdata acquisition and control frequency was 200 Hz, larger
11(a). The initial condition for the controller is taken equal to than the inherent frequency of the oscillatiqrsl Hz).
the initial value of the currenty(0)=i(0)=[V,—-e(0)]/R. We The experimental parametefsoncentration of sulfuric
see that only a small part of the limit cycle resides in theacid 4.5 M, added external resistance &D2circuit poten-
basin of attraction of the saddle point. This means that th&al, V,) have been optimized to show similar dynamics to
control will not always be successful if we try to switch the those of the simulations. AV,=1.240 V, periodic oscilla-
system behavior from a regime of limit cycle oscillations totions and a low-current, stable steady state are sgdna
a saddle steady state. We succeed in our intention only if whigher potential, abouV,=1.270 V, the oscillations disap-
switch on a control at a proper moment when the phase gfear with finite amplitude and infinite period characteristic of
limit cycle oscillations is in the basin of attraction of the a saddle loop bifurcation.In this parameter region, the
saddle steady state. If the control is switched on at an immodel predicts the existence of two additional unstable
proper moment, the feedback perturbation increases rapiditeady states, namely a high current unstable focus inside the
and the system runs far away from the saddle point and limilimit cycle and a saddle point between the lower stable and
cycle. A natural way to avoid such runaways is to restrict thethe higher unstable one.
perturbation. The stabilization of these latter two steady states has been
We analyzed the system behavior under the following alperformed by implementing the two above-described control
gorithm of the restriction. When the absolute value of thetechniques. Figure 12 shows successful stabilization of a
perturbatior|8V| reaches some maximufV,,,,, We zero the  saddle steady state by using the potential as a control signal,
perturbation by changing the state of the controller.thdie  when the the control algorithm is described by EGS) and
the moment when the perturbation reaches the maximum qp4). As soon as the control is turned on, the system ap-
the allowable amplitude V(t,)| = Vmax At this moment we  proaches the saddle point. After turning the control off, the
change the state of the controller setting the variabtgiual  system returns to the original limit cycle. The control is not
to the currentw(t,)=i(t,). From Eq.(27) it follows that the  perfect; the perturbations decay to a nonzero value. Small
perturbation at this moment turns to ze#d(t,,) =0. Figures offset of the perturbations was always observed using the
11(b)-11(d) show an evolution of the basin of attraction potential as observable. This method also requires a small
when varying the paramete®V,,,. For sufficiently small enough value of restrictiodV ;=50 mV. At large 6V
N maw the basin of attraction becomes rather large so that thée.g., 100—-200 mYthe offset can also be large, and success-
limit cycle totally resides in the basin of attractigfrig.  ful control is difficult to obtain.
11(d)]. In this case the system behavior can be changed from Better results have been obtained using the current as an
periodic limit cycle oscillations to a saddle steady state byobservable, i.e., with the algorithm based on E@§) and
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FIG. 12. Control of a saddle point using the potential as a con- FIG. 14. Stabilization of the coexisting unstable focus by chang-
trol signal. Control algorithm is described by E¢&3) and(24). (a) ing the sign of the parametaf. All the parameters are the same as
Dynamics of the currerit (b) Dynamics of the perturbatiodV. (c) in Fig. 13, exceph®, which here is equal to -0.I'5
Dynamics of the controller variabler. Vy=1.24 V, r=602(}, k
=200,\°=0.1 S, 6Vpa=50 mV. shown with the stabilized unstable states. At lower potentials

[Fig. 15@)], there is only a stable limit cycle and an unstable

(27). Figure 13 shows results similar to those presented iffiocus. As the potential is increasgiig. 15b)], new steady
Fig. 12, but obtained with the latter control algorithm. The states(the saddle and the stable nodeccur in the low-
control is achieved without an apparent offset, and is nogurrent region via a saddle node bifurcation. With further
sensitive to the choice a#V .y

The same control algorithm has been applied to stabilize (a) (b}
the unstable focus inside the limit cycle. This has been
achieved by changing only the sign of the paramgtethus
converting the unstable controller into the stable controller.
The results of the stabilization of the coexisting unstable
focus are shown in Fig. 14.

The robustness of the control algorithm enabled us to sta- a2
bilize unstable steady states in the whole parameter region of
interest. By mapping the stable and unstable phase objects, © )

we managed to visualize bifurcations from experimental
data. In Fig. 15, the stable steady states and limit cycles are

i(t) (mA)

06l ‘ ‘ ‘ ‘ ‘ ' ‘ ‘ ‘ o
E
- 02 n ]
(@ °© 20 a0 60 8 100 120 140 160 180
200 T T r T T T T T T (e) ()
< 06|
E o M o
2 04| A
(b) 20 20 40 60 80 100 120 140 160 180 . n
T r r 0.2
o8t 1
E 04f | | 1
; 02 0 0.2 0.4 0.6
: i(t-0.255) (MA)

ZID 4ID GIO BIO 160 150 1;0 1&0 1&0
(c) t(s) FIG. 15. Experimentally reconstructed phase portraits of differ-
ent steady stategircle: high current unstable state, square: low-
FIG. 13. The same as in Fig. 12 but for the control techniquecurrent stable state, triangle: saddle ppiahd the limit cycles
based on Eqg26) and (27), i.e., the current is used as a control (solid lineg at different circuit potentialsvVy: (a) 1.200 V, (b)
signal.k=8000, A°=0.1 S, 6V;;,5=200 mV. 1.220 V,(c) 1.260 V,(d) 1.270 V,(e) 1.380 V,(f) 1.410 V.
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increase in the potentidFig. 15c)], the saddle point ap- to that of a delayed feedback controller; it cannot stabilize
proaches the limit cycle; the limit cycle disappears with theunstable steady states with an odd number of real positive
collision of the saddle poinfFig. 15d)], resulting in a eigenvalues. To overcome this limitation, we use an unstable
saddle-looghomoclinig bifurcation. At larger potentials, the low-pass filter that can stabilize saddle-type steady states of
saddle approaches the upper steady state and disappedymamical systems.
through another saddle node bifurcation. At large potentials The efficiency of the adaptive controller is demonstrated
[Fig. 3)], only one stable steady state exists. These phader several models, namely a pendulum driven with a con-
portraits are in good qualitative agreement with the modektant torque, the Lorenz system, and the electrochemical os-
results presented in Fig. 7. This implies that the control alcillator. The analysis of the basin of attraction of the stabi-
gorithm is a useful tool in experiments for reconstructinglized fixed point shows that this basin can be essentially
phase portraits of stable and unstable objects. enlarged by a restriction of the feedback perturbation. With
the method, both direct and indirect variables can be used for
control; in the electrochemical example explored here, the
V. CONCLUSIONS use of the current, the indirect variable, was more efficient.

In this paper, we have considered a simple adaptive dy- The exper|m$_nts Vr‘:'th tfl;e electrocpehmlc?jl n|(_:kel d'ssmlll‘"
namic controller for stabilizing unknown unstable steady!On System confirm the robustness of the adaptive controller

states of dynamical systems. It is similar to the delayed feed‘imd de_monstrate its .capability of stabiliz.ing unknown.stead.y
states in systems with unknown dynamical laws. Using this

back controller, however the delay line is replaced with the .
low-pass filter. The controller is reference-free; it does nofcPntroller, we managed to reconstruct the phase portraits of

require knowledge of either the position of the fixed point inthe system directly from experimental data and detect vari-

the phase space or the exact dynamical laws. The controll@S Pifurcations that appear in the system when the control

automatically finds and stabilizes the unstable fixed point ifParameter is varied.

the phase space. Whene\/_er the stablllzatlpn is attalned{ the ACKNOWLEDGMENTS

feedback perturbation vanishes and there is no power dissi-
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