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A simple adaptive controller based on a low-pass filter to stabilize unstable steady states of dynamical
systems is considered. The controller is reference-free; it does not require knowledge of the location of the
fixed point in the phase space. A topological limitation similar to that of the delayed feedback controller is
discussed. We show that the saddle-type steady states cannot be stabilized by using the conventional low-pass
filter. The limitation can be overcome by using an unstable low-pass filter. The use of the controller is
demonstrated for several physical models, including the pendulum driven by a constant torque, the Lorenz
system, and an electrochemical oscillator. Linear and nonlinear analyses of the models are performed and the
problem of the basins of attraction of the stabilized steady states is discussed. The robustness of the controller
is demonstrated in experiments and numerical simulations with an electrochemical oscillator, the dissolution of
nickel in sulfuric acid; a comparison of the effect of using direct and indirect variables in the control is made.
With the use of the controller, all unstable phase-space objects are successfully reconstructed experimentally.
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I. INTRODUCTION

Control theory is one of the central subjects in engineer-
ing science. Despite the fact that engineers and applied math-
ematicians have been dealing with control problems for a
long time and a huge amount of knowledge has been gath-
ered[1–4], some new ideas were introduced by physicists a
decade ago[5] and have boosted an enormous amount of
work on control problems[6–9]. These new concepts are
based on the observation that chaotic dynamical systems
contain a huge number of unstable periodic orbits. These
orbits represent genuine motions of the system and can be
stabilized by applying tiny control forces. Hence chaotic dy-
namics opens the possibility to use flexible control tech-
niques and stabilize quite distinct types of motion in a single
system with small control power. A convenient chaos control
technique successfully implemented in various experiments
is based on delayed feedback perturbation[10]. However,
Nakajima[11] proved there is a topological limitation with
this technique, namely that it cannot stabilize torsion-free
periodic orbits, which are characterized by an odd number of
real positive Floquet exponents. It has been recently shown
that an additional unstable degree of freedom introduced into
a feedback loop can overcome this limitation[12].

Although the field of controlling chaos deals mainly with
the stabilization of unstable periodic orbits, the problem of
controlling the system dynamics on unstable fixed points
(nonoscillatory solutions) could be more important for vari-
ous technical applications. Controlling the system dynamics
on unstable steady fixed points is of practical importance in
experimental situations where chaotic or periodic oscillations
cause degradation in performance. Usual methods of classi-
cal control theory are based on proportional feedback pertur-

bations[4]. They use reference signals that require knowl-
edge of the location of the unstable fixed point in phase
space. However, for many complex systems the location of
the fixed point, as well as exact model equations, are not
accessible. In this case, adaptive, reference-free control tech-
niques, capable of automatically locating the unknown
steady state, are preferable.

A straightforward idea to attain an adaptive stabilization
of the unknown steady state may be based on derivative con-
trol [13,14]. In this approach, the control perturbation is de-
rived from the derivative of an observable. Such a perturba-
tion does not influence the steady-state solutions of the
original system, since it vanishes whenever the system ap-
proaches the steady state. In practice this method is sensitive
to high-frequency fluctuations because it requires a differen-
tiation of a signal. To avoid this shortcoming the derivative
may be replaced by a finite difference. Such an idea leads to
a time-delay feedback control method. In Ref.[10] it is
shown that the time-delay feedback method is indeed ca-
pable of stabilizing not only unstable periodic orbits, but
unstable steady states as well. These features of the time-
delay feedback control method are discussed in more detail
in Refs.[15,16]. The theory of the method is rather compli-
cated, since the time-delay feedback involves an infinite
number of additional degrees of freedom.

Nevertheless, the problem of adaptive stabilization of
fixed points is simpler than the problem of stabilizing un-
stable periodic orbits and can be successfully solved without
the use of time-delay signals. Any adaptive controller, of
course, should have inherent degrees of freedom. However,
for the fixed points an adaptive controller can be designed on
the basis of a finite-dimensional dynamical system. The sim-
plest example of such a controller may utilize a conventional
low-pass filter that has only one inherent degree of freedom.
The filtered output signal of the system estimates the location
of the fixed point, so that the difference between the actual
and filtered output signals can be used as a feedback pertur-*Electronic address: pyragas@pfi.lt; http://pyragas.pfi.lt
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bation. Such a simple dynamic controller has been success-
fully implemented in different experiments, including a
Mackey-Glass system[16], an electronic chaos oscillator
[17], and lasers[18,19]. In Ref. [20], a controller based on a
cascade of high-pass filters has been utilized. However, in a
short Letter[21] we have recently demonstrated that these
controllers have a topological limitation, similar to that of a
time-delay feedback controller. They cannot stabilize the
steady states with an odd number of real positive eigenval-
ues. To overcome the limitation, we proposed to implement
an unstable degree of freedom in the feedback loop. In this
paper, we extend these ideas.

The rest of the paper is organized as follows. In Sec. II,
we describe an adaptive controller based on a simple low-
pass filter and demonstrate its performance for two simple
mathematical models. We show that an unstable focus can be
stabilized by a stable controller, while a saddle requires the
use of an unstable controller. The efficiency of the controller
to stabilize unknown steady states in real physical systems is
demonstrated in Sec. III. We consider two systems, namely a
pendulum driven with a constant torque and the Lorenz sys-
tem that describes a chaotic convection in a vertical loop.
Section IV is devoted to the problem of controlling an elec-
trodissolution process, the dissolution of nickel in sulfuric
acid. We design two adaptive controllers and demonstrate
their capability to stabilize unstable foci and saddle steady
states in the oscillating regime. We analyze how the restric-
tion of the feedback perturbation influences the size of attrac-
tion basins of the stabilized steady states. Experiments are
carried out on the stabilization of both saddle- and focus-
type unstable states. Lastly, we finish the paper with conclu-
sions presented in Sec. V.

II. ADAPTIVE CONTROLLER

Consider an autonomous dynamical system described by
ordinary differential equations

ẋ = fsx,pd, s1d

where the vectorxPRm defines the dynamical variables and
p is a scalar parameter available for an external adjustment.
We imagine that a scalar variable

ystd = g„xstd… s2d

that is a function of dynamical variablesxstd can be mea-
sured as a system output. Let us suppose that atp=p0 the
system has an unstable fixed pointx* that satisfiesfsx* ,p0d
=0. If the steady state valuey* =gsx*d of the observable cor-
responding to the fixed point were known, we could try to
stabilize it by using a standard proportional feedback control,
i.e., adjusting the control parameter by the lawp=p0−ksy
−y*d. However, we suppose that the reference valuey* is
unknown. Our aim is to construct a reference-free feedback
perturbation that automatically locates and stabilizes the
fixed point. Such a perturbation should vanish when the sys-
tem settles on the fixed point. The simplest controller satis-
fying this requirement can be constructed on a basis of one-
dimensional dynamical system

ẇ = vcsy − wd s3d

that represents a simple low-pass filter(LPF). Here w is a
dynamical variable of the controller andvc represents the
cutoff frequency of the filter. The output of the filter gives an
averaged input variableystd. If ystd oscillates about the
steady-state valuey* one can expect that the output variable
wstd converges to this value. Thus the reference valuey* in
the proportional feedback control can be replaced with the
output variable of the filter. Then the control parameter can
be adjusted in the following way:

p = p0 − ksy − wd, s4d

wherek is the control gain. The block diagram of this control
technique is shown in Fig. 1. It is similar to the delayed
feedback control technique[10], but instead of the delay line
we use here a LPF. Note that the whole feedback loop rep-
resents a high-pass filter, since the control signalksy−wd is
obtained from the difference of the actual output signal and
that filtered by the LPF. The control signal is proportional to
the derivative of the controller variable,ksy−wd=sk/vcdẇ.
For vc→`, from Eq.(3) it follows thatwstd→ystd. Thus for
large vc the control signal becomes proportional to the de-
rivative of the outputẏ, and our controller operates as a
simple derivative controller. However, using a simple model
we shall demonstrate that the best performance of the con-
troller is attained for small values of the cutoff frequencyvc

(smaller values ofvc can stabilize more unstable steady
states). Thus generally this controller cannot be considered
as an approximation to a simple derivative approach.

The closed-loop system is described by Eqs.(1)–(4). The
feedback perturbation does not influence the location of the
original fixed point x* since the steady-state value of the
controller variablew* coincides with the steady-state value
of the observabley* . In the extended phase space of variables
sx ,wd, the fixed point of the closed-loop system has coordi-
natessx* ,y*d so that its projection on the phase space of the
free system remains unchanged. However, the perturbation
may change the stability of the fixed point.

Small deviationsdx=x−x* anddw=w−w* from the fixed
point are described by variational equations

dẋ = Jdx − kPsGdx − dwd, s5ad

dẇ = vcsGdx − dwd, s5bd

whereJ=Dxfsx* ,p0d, P=Dpfsx* ,p0d, andG=Dxgsx*d. Here
Dx denotes the vector derivative with respect to dynamical

FIG. 1. Block diagram of adaptive control of an unknown steady
state of the dynamical system. LPF denotes low-pass filter.
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variablesx, and Dp is a scalar derivative with respect to
control parameterp. The closed-loop system is linearly
stable if all the eigenvalues of the system(5) are in the left
half-plane. In a previous paper[21], we provide a theorem
concerning an important topological limitation of the above
controller. We proved that the controller with the usual LPF
cannot stabilize unstable fixed points with an odd number of
real positive eigenvalues. To stabilize such fixed points, we
need an unstable controller with the negative parametervc.
The latter can be built up as anRC circuit with a negative
resistor. Similar limitation is valid even for a more general
case such as the one considered in this paper. It holds when
the control parameterp and the controller variablew are the
vectors[21].

The above limitation is related to adaptive features of the
controller and can be simply explained by bifurcation theory.
Suppose that in an extended phase spacesx ,wd the fixed
point sx* ,w*d has an odd total number of real positive eigen-
values. Then if this fixed point is stabilized, one of such
eigenvalues must cross into the left half-plane on the real
axes. Such a situation corresponds to a tangent bifurcation,
which is accompanied by a coalescence of fixed points.
However, this contradicts the fact that the feedback pertur-
bation does not change the locations of fixed points. Thus
any feedback perturbation that does not change the location
of the fixed point can induce stabilization only through a
Hopf bifurcation, since this is the only bifurcation that oc-
curs with a single fixed point without any coalescence with
other fixed points. At a Hopf bifurcation, a pair of complex-
conjugate eigenvalues crosses into the left half-plane. A nec-
essary condition for this bifurcation is that the total number
of eigenvalues with positive real parts must be even. Only in
this case can complex-conjugate pairs move to the left half-
plane. That is why we need an unstable controllersvc,0d
when stabilizing a steady state with an odd number of real
positive eigenvalues(e.g., a saddle) and we can use a usual
LPF with vc.0 for the stabilization of a steady state with an
even number of real positive eigenvalues(e.g., an unstable
focus).

We demonstrate a mechanism of adaptive stabilization of
unknown steady states with two simple mathematical ex-
amples. The first example describes the control of an un-
stable focus,

ẋ = gssx − x*d − sy − y*d, s6ad

ẏ = sx − x*d + gssy − y*d + p, s6bd

ẇ = lcsw − yd, p = − ksw − yd. s6cd

Equations(6a) and (6b) represent a normal form of a focus;
p is a control parameter. Forp=p0=0, the location of the
fixed point issx* ,y*d. We imagine that these coordinates are
unknown. Here time is normalized to the period of the focus
such that its eigenvalues arel1,2

s =gs± i. Parametergs.0
defines the degree of instability of the focus. Equation(6c)
describes an adaptive controller. Instead of the cutoff fre-
quencyvc, we introduced here the parameterlc=−vc,0
that represents the eigenvalue of the free controller. We sup-

pose thaty is an observable and the control parameterp
influences only the second equation of the controlled system.

To analyze the stability of the fixed pointsx* ,y* ,y*d in an
extended phase spacesx,y,wd, it is convenient to shift the
origin of the coordinate system to the fixed point by replac-
ing the variablesdx=x−x* , dy=y* , dw=w−y* . In these vari-
ables, the transfer functions of the system and controller,
respectively, are Gssd=ss−gsd / fss−gsd2+1g and Hssd
=ks/ ss−lcd. The eigenvalues of the fixed point are deter-
mined by poles of the closed-loop system transfer function,
i.e., by the equation 1+HsldGsld=0,

1 + k
l

l − lc

l − gs

sl − gsd2 + 1
= 0. s7d

A mechanism of stabilization is evident from a root loci dia-
gram presented in Fig. 2(a). The poles and zeros of the prod-
uct HsldGsld define the location of the eigenvalues fork
=0 andk→`, respectively. Fork=0, there are two complex-
conjugate eigenvaluesl=l1,2

s =g± i in the right half-plane,

FIG. 2. (a)–(c) Stabilizing an unstable focus with a stable con-
troller in a model of Eqs.(6). (a) Root loci of the characteristic
equation(7) as k is varied from 0 to` for gs=0.5 andlc=−vc=
−0.1. The crosses and solid dots denote the location of roots atk
=0 andk→`, respectively.(b) Dependence of the real part of ei-
genvalues on the control gain.(c) Domains of stability of the fixed
point in the parameter planesk,gsd for different values oflc. (d)–(f)
Stabilizing an unstable saddle with an unstable controller in a
simple model of Eqs.(8) for ls=1 andlc=0.1. Characteristics are
similar to those presented in the left column of the figure.
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corresponding to the free system, and one real eigenvalue
l=lc=−vc in the left half-plane, corresponding to the free
controller. Ask is increased, the eigenvalue of the controller
moves to the left. The complex-conjugate pair of the system
roots initially moves to the left as well, and fork=k01 these
roots cross into the left half-plane(Hopf bifurcation), then
return, and fork=k02 cross into the right half-plane again
(another Hopf bifurcation). Afterwards, they collide on the
real axis and one of them moves to the origin of the complex
l plane, and another to the positionl=gs. The dependence
of the real parts of eigenvalues on the control gaink is shown
in Fig. 2(b). In the intervalk01,k,k02, the real parts of all
eigenvalues are negative and the steady state of the closed-
loop system is stable. Figure 2(c) shows the domains of sta-
bility of the closed-loop system in the parameter planesk,gsd
for different values of the cutoff frequencyvc=−lc of the
low-pass filter. The properties of the controller are improved
by decreasing the cutoff frequencyvc. Smaller values ofvc

can stabilize more unstable foci. However, the controller
cannot stabilize a strongly unstable focus wheregs.1. This
limitation is due to the configuration of the coupling of the
feedback force. The feedback perturbs only one variable[Eq.
(6b)] of the focus. For this coupling configuration, the same
limitation is valid in the case of proportional feedback con-
trol. Note that this limitation is not inherent to the control
algorithm. For a fixed coupling configuration, one can design
a higher-order adaptive controller that can stabilize any focus
with arbitrary large parametergs.

The second example illustrates the use of an unstable con-
troller in the case of an even number of real positive eigen-
values. The simplest representative of such a type is a one-
dimensional dynamical systemẏ=lssy−y*d that has an
unstable fixed pointy* with only one real positive eigenvalue
ls.0. The system controlled by the adaptive controller is
described by the equations

ẏ = lssy − y*d + p, s8ad

ẇ = lcsw − yd, p = − ksw − yd. s8bd

Now the transfer function of the system isGssd=1/ss−lsd
and the eigenvalues of the closed-loop system satisfy an
equality

1 + k
l

l − lc

1

sl − lsd
= 0 s9d

that is equivalent to the quadratic equationl2−sls+lc

−kdl+lslc=0. The stability conditions of this characteristic
equation arek.ls+lc, lslc.0. We see that the stabiliza-
tion is not possible with a conventional low-pass filter since
for any ls.0, lc,0, we havelslc,0 and the second sta-
bility criterion is not met. However, the stabilization can be
attained via an unstable controller with a positive parameter
lc (or negative cutoff frequencyvc). The right column of
Fig. 2 shows similar characteristics to those of the previous
model. The root loci diagram[Fig. 2(d)] demonstrates a
mechanism of stabilization. Fork=0, the eigenvalues arels

and lc, which correspond to the free system and free con-
troller, respectively. With the increase ofk, they approach

each other on the real axes, then collide atk=k1;ls+lc

−2Îlslc and pass to the complex plane. Atk=k0;ls+lc,
they cross symmetrically into the left half-plane(Hopf bifur-
cation). At k=k2;ls+lc+2Îlslc, we have again a collision
on the real axes and then one of the roots moves towards −`
and another approaches the origin. Fork.k0, the closed-
loop system is stable. An optimal value of the control gain is
k2 since it provides the fastest convergence to the fixed point.

Note that both models considered here are linear. Thus the
defined stability criteria are global, i.e., they are valid for any
initial conditions. For nonlinear systems, the linear stability
guarantees the stabilization of the steady state only for the
initial conditions that are close to the fixed point. In a real
physical system, the domain of attraction of the linearly sta-
bilized fixed point depends on specific nonlinear properties
of the system. In Sec. IV we consider this problem in more
detail.

III. APPLICATION TO PHYSICAL MODELS

In this section we illustrate the efficiency of the adaptive
controller for two physical models. First we use an unstable
controller to stabilize a saddle steady state of a pendulum
driven by a constant torque. Then we demonstrate an adap-
tive stabilization of all unstable steady states in a chaotic
flow described by the Lorenz system.

A. Control of a pendulum driven by a constant torque

Consider a simple mechanical example of a nonlinear os-
cillator: a pendulum driven by a constant torque. The equa-
tion of motion in dimensionless form reads

Q̈ + bQ̇ + sin Q = g. s10d

Here Q denotes the angle between the pendulum and the
downward vertical(see the inset in Fig. 3). b=b/mL3/2g1/2

andg=G /mgLare the dimensionless parameters, wherem is
the mass andL is the length of the pendulum,b is a viscous
damping constant,g is the acceleration due to gravity, andG
is an applied constant torque. The time is normalized to a
periodT=sL /gd1/2 of small oscillations of the free pendulum.

For small torqueg,1, the pendulum has two equilibrium

steady states whose coordinates insQ ,Q̇d phase plane are
sQs,0d and sQu,0d, where Qs=arcsing and Qu=p
−arcsing. In these steady states the gravity balances the ap-
plied torque. The first is a stable node or spiral and the sec-
ond is a saddle point. Our goal is to stabilize the saddle point
sQu,0d by using an unstable adaptive controller based on the
RC circuit with a negative resistance.

We suppose that an observable is the angleQ, and that we
can control the system by applying a feedback perturbation
to the torqueg. Then our controlled system is

Q̇ = V, s11ad

V̇ = − bV − sin Q + g + ksw − Qd, s11bd
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ẇ = lcsw − Qd. s11cd

The controller can stabilize the saddle steady state of the
pendulum if the fixed pointsQu,0 ,Qud of the controlled sys-
tem (11) in the extended phase space of variablessQ ,V ,wd
is stable. Linearization of the system(11) about this fixed
point yields the characteristic equation

l3 + sb − lcdl2 + sk − Î1 − g2 − lcbdl + lcÎ1 − g2 = 0.

s12d

The fixed point is linearly stable if all the roots of Eq.(12)
have negative real parts. Using the well-known Routh-
Hurwitz criteria[22], one obtains the following stability con-
ditions:

k . k0 ; bflc + Î1 − g2/sb − lcdg, 0 , lc , b. s13d

As is expected from a general theory, the necessary stability
condition islc.0, i.e., the saddle steady state can be stabi-
lized only with an unstable controller.

Figure 3(a) shows the real parts of eigenvaluesl as func-
tions of the control gaink. Similar to the above simple ex-
ample, the real positive eigenvalues of the pendulum and
controller collide on the real axis, pass to the complex plane,
and at k=k0 cross into the left half-plane. The results of
direct numerical integration of the nonlinear system(11) are
presented in Figs. 3(b) and 3(c). The initial condition of the
controller at the moment of switching on the controlt= tc

=19 coincides with the current value of the angle,wstcd
=Qstcd. The parameters are chosen in such a way that the
uncontrolled pendulum is in a multistable regime: depending
on initial conditions it can settle into either a rotating solu-
tion where it whirls over the top, or a stable rest stateQs
where the gravity balances the applied torque. For the same
values of parameters, there is a coexisting unstable rest state
Qu of a saddle type. Figure 3(b) shows how the rotating
pendulum reaches this state, after applying the feedback per-
turbation. As is seen from Fig. 3(c), the perturbation vanishes
as the stabilization of the saddle steady state is attained. Re-
member that our controller is reference-free, i.e., it does not
utilize knowledge of the position of the fixed point. Thus it
can be used for a tracking procedure. The controlled system
will remain in the stabilized saddle state even under a slow
variation of the applied torque.

B. Control of the Lorenz system

Now we consider the control of stability of the steady
states in a chaotic system described by the Lorenz equations
[23]

ẋ = ssy − xd, s14ad

ẏ = rx − y − xz, s14bd

ż= xy− bz. s14cd

Originally this model has been derived and analyzed in the
context of turbulent convection. Fortunately, there is a simple
physical realization of the Lorenz model: convection in a
vertical loop (see the inset in Fig. 4) [24,25]. The fluid is
heated from below, and for strong enough heating, convec-
tion sets in. The motion is first steady, with a constant veloc-
ity V. Clearly, due to symmetry, motions in both the clock-
wise and counterclockwise directions are possible. If the
heating from below increases, the steady rotation becomes
unstable and chaotic reversions of the flow are observed. In
the context of the above experiment, the variables of the
Lorenz equations have the following physical meaning:x is
proportional to the flow velocityV, y is proportional to the
horizontal temperature differenceT3−T1, and z is propor-
tional to the vertical temperature differenceT4−T2. s, b, and
r are dimensionless parameters. When analyzing the Lorenz
system, the parameterss andb are usually fixed to the val-
ues 10 and 8/3, respectively. The parameterr is proportional
to the heating rate at the bottom and is usually taken as a
main control parameter.

For 0, r ,1, the Lorenz system has a unique stable
steady state(a stable node) at the originsx,y,zd=s0,0,0d.
For r .1, the origin becomes a saddle. This means that the
motionless state of the liquid loses stability. Just at this bi-
furcation two additional symmetrical stable steady states
(fbsr −1dg1/2,fbsr −1dg1/2,r −1) and (−fbsr −1dg1/2,−fbsr
−1dg1/2,r −1) appear. They correspond to the stationary mo-
tion of the liquid with constant velocity. Forr . rh=sss+b
+3d / ss−b−1d, these fixed points lose their stability and be-
come unstable spirals. Now a chaotic motion of the liquid is

FIG. 3. Stabilizing a saddle steady state of the pendulum driven
by a constant torque.(a) Eigenvalues of the controlled pendulum as
functions of the control gaink. (b) The dynamics of they projection
of the pendulum.(c) The dynamics of the perturbation. The param-
eters areb=0.2, g=0.7, lc=0.1. In (b) and (c), the feedback per-
turbation is switched on at the momentt= tc=20 and the value of
control gain isk=2.6.
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observed in the system. Our aim is to stabilize all unstable
steady states of the system in a chaotic regime forr . rh
using the above adaptive dynamic controller.

We suppose that the observable isy and we can influence
the temperature differenceT3−T1 by additional heating of
the loop in the horizontal direction. Then we analyze the
controlled Lorenz system described by the following equa-
tions:

ẋ = ssy − xd, s15ad

ẏ = rx − y − xz+ ksw − yd, s15bd

ż= xy− bz, s15cd

ẇ = lcsw − yd. s15dd

We start with the problem of stabilizing the motionless
steady state, i.e., the saddle fixed point at the origin. This
fixed point has one positive and two negative real eigenval-
ues. Thus it can be stabilized only with an unstable controller
with the positive parameterlc. Indeed, linearizing the system
(15) about the originsx,y,z,wd=s0,0,0,0d, we obtain that
one eigenvalue is independent ofk and is negativel=−b,
and three remaining eigenvalues satisfy the characteristic
equation

l3 + ss + 1 −lc + kdl2 + fss1 − r − lc + kd − lcgl

+ slcsr − 1d = 0. s16d

The necessary condition of stability of the polynomial(16) is
slcsr −1d.0. The latter can be satisfied only with an un-
stable controller,lc.0. Using the Routh-Hurwitz criteria
[22] one can obtain the threshold of the stabilityk0. For s
=10, r =28, and sufficiently smalllc the stability condition
reads

k . k0slcd < 27 + 1.81lc. s17d

Figure 4(a) shows the three largest real parts of eigenvalues
as functions of the control gaink. The horizontal line in this
figure corresponds to the eigenvaluel=−b that is indepen-
dent of k. The results of direct integration of the nonlinear
system(15) are shown in Figs. 4(b) and 4(c). Initially the
system is in a chaotic regime. When the perturbation is
switched on, the system is forced to the rest state. Whenever
the stabilization of the rest state is attained, the feedback
perturbation vanishes.

Similar results of adaptive stabilization of the unstable
spirals (±fbsr −1dg1/2, ±fbsr −1dg1/2,r −1) are shown in Fig.
5. These fixed points correspond to the stationary motion of
the liquid in clockwise and counterclockwise directions with
the constant velocity. They have identical stability conditions
and, depending on initial conditions, the system can be sta-
bilized to either of these states. The unstable spirals have one
real negative eigenvalue and a complex-conjugate pair of
eigenvalues with the positive real part. Thus we use a stable
controller for the stabilization. Physically, this stabilization
means that chaotic convection of the system is transformed
into regular convection with a constant velocity of the liquid.

FIG. 4. Stabilizing a saddle steady state(nonconvective state) of
the Lorenz system with an unstable controller.(a) Eigenvalues of
the controlled Lorenz system as functions of the control gaink. (b)
The dynamics of they variable.(c) The dynamics of the perturba-
tion. The parameters ares=10,b=8/3, r =28,lc=1. In (b) and(c),
the feedback perturbation is switched on at the momentt= tc=30.
The initial condition of the controller at this moment coincides with
the observabley, wstcd=ystcd. The value of control gain isk=55.

FIG. 5. Stabilizing an unstable spiral(convective state with a
constant velocity of the fluid) of the Lorenz system with a stable
controller. The values of the parameters are the same as in Fig. 4,
except lc and k, which that here are equal to −4 and 20,
respectively.
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We emphasize that this state can be maintained by applying
only tiny feedback perturbations.

IV. CONTROL OF AN ELECTROCHEMICAL
OSCILLATOR

Lastly, we demonstrate the use of an adaptive controller
with control in an electrodissolution process, the dissolution
of nickel in sulfuric acid. A model for the galvanostatic dis-
solution (constant current) has been developed by Haimet
al. [26]. A form of this model, modified for potentiostatic
(constant applied potential) operation, describes the steady-
state dependence on the potential, bistability, and periodic
oscillatory behavior. The dimensionless model reads

ė= sV − ed/R− f3seds1 − Qd, s18ad

G1Q̇ = f1seds1 − Qd − f2sedQ. s18bd

Heree is the dimensionless potential of the Ni electrode and
Q is the surface coverage of NiO+NiOH. The functions in
the above expressions are

f1sed =
exps0.5ed

1 + Chexpsed
, s19ad

f2sed =
bChexps2ed

ChC + expsed
, s19bd

f3sed = Chf1sed + a expsed. s19cd

An observable is the current through the Ni electrode,

i = sV − ed/R, s20d

where R is the series resistance of the cell, andV is the
circuit potential—the main experimentally controlled param-
eter. We shall control the system dynamics by varying this
parameterV=V0+dV with the feedback signaldV derived
from the observableistd. But first we consider the steady-
state solutions and dynamical properties of the free system,
whendV=0, i.e.,V=V0=const.

A. Analysis of the system without control

For a fixed voltageV=V0, the steady-state solutions
se0,Q0d of the system(18) are determined by equations

sV0 − e0d/R− f3se0ds1 − Q0d = 0, s21ad

f1se0ds1 − Q0d − f2se0dQ0 = 0. s21bd

These equations are linear with respect to variablesV0 and
Q0. Thus we can easily obtain explicit expressions

Q0 = Q0se0d =
f1se0d

f1se0d + f2se0d
, s22ad

V0 = V0se0d = e0 + R
f2se0df3se0d

f1se0d + f2se0d
s22bd

that define the steady-state characteristics of the system in a
parametric form(e0 is interpreted as an independent param-

eter). The steady characteristicse0 vs V0 and i vs V0 are
shown in Fig. 6. We see that in a certain interval of the
potentialV0 the system has three coexisting fixed points. The
linear analysis of these points shows that the lower branch in
Fig. 6(a) corresponds to an unstable spiral, the middle branch
represents a saddle, and the upper branch is a stable node.

Now we discuss the bifurcations that appear in the system
when varying the control parameterV0. The phase portraits
of the system for different values ofV0 are shown in Fig. 7.
The results are presented in the delayed phase-space coordi-
nates(istd , ist−td) using the observableistd. Such a choice of
the phase-space variables allows us to compare the numerical
results with the experimental ones.

FIG. 6. Steady-state characteristics of the chemical reaction ob-
tained from Eqs.(21). The dashed line represents an unstable spiral,
the dotted line corresponds to a saddle, and the solid line is a stable
node. The values of the parameters areR=50, G1=10−2, b=6
310−5, Ch=1600,C=10−3, anda=0.3.

FIG. 7. Phase portraits of the free chemical system presented in
delayed coordinatesst=0.94d for different values of the voltageV0:
(a) 62.5, (b) 64.5, (c) 66.5, (d) 68.5, (e) 74.5, (f) 76.5. The circles,
triangles, and squares denote unstable spirals, saddles, and stable
nodes, respectively. The values of the parameters are the same as in
Fig. 6.
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For small valuesV0, an unstable spiral is the only steady
state of the system. This spiral is surrounded by a stable limit
cycle that corresponds to chemical oscillations[Fig. 7(a)].
The increase ofV0 leads to a saddle-node bifurcation at
which two additional fixed points appear[Fig. 7(b)]. Then
the saddle collides with the limit cycle[homoclinic bifurca-
tion, Fig. 7(c)], and the limit cycle disappears[Fig. 7(d)].
The further increase ofV0 leads to another saddle-node, bi-
furcation [Fig. 7(e)], and the only one fixed point, a stable
node, remains in the system[Fig. 7(f)].

Next, we fix the value of the voltageV0=63.888[in Fig.
6(a) this value is marked by a vertical dotted line]. Then the
system has two unstable fixed points: a saddle and an un-
stable spiral, whose coordinatesse0,Q0d are s0.0,0.0166d
and s−1.7074,0.4521d, respectively. We consider the prob-
lem of stabilizing these unstable states by using two different
strategies. In the first, the value of the potentiale is taken as
a control signal. We suppose that this value can be recon-
structed from the observablei. In the second, we design the
controller that uses directly the observablei.

B. Stabilization using the potential as a control signal

Since the input variable, the voltageV, perturbs only the
first differential equation of the system(18), it is natural to
construct the perturbation in such a way that it introduces a
negative feedback to the potentiale. If the value of the cir-
cuit resistanceR is known, then the value of the potentiale
can be reconstructed from the observablei and input variable
V: e=V− iR. However, the exact valueR is unknown in an
experiment. Then we propose to use the differenceẽ=V− ir
as an effective control signal, wherer is an adjustable control
parameter that need not be exactly equal to the circuit resis-
tanceR. We shall see that the stabilization can be attained for
r ÞR as well.

Here we restrict ourselves to the problem of stabilizing
the saddle steady state that requires use of an unstable con-
troller. We define an unstable controller for an effective po-
tential ẽ by the differential equation

dw

dt
= lcsw − ẽd = lcsw − V + ir d, s23d

wherew is a dynamic variable of the controller andlc is a
positive constant. Now we feed back the control perturbation
dV=ksw−V+ ir d to the adjustable parameterV,

V = V0 + ksw + ir − Vd. s24d

Solving this equation together with Eq.(20), we obtain the
expression for the voltage,

V =
V0 + ksw − e/Rd
1 + ks1 − r/Rd

, s25d

where k is the control gain. Thus the controlled chemical
system is defined by differential equations(18) and(23), and
algebraic expressions(19), (20), and (25). Note that the in-
troduced controller does not change the steady-state solu-
tions of the free chemical system. Indeed, the stationary state
of the controller is determined by the equalityw−V+ ir =0.

Thus the perturbation added to the voltage is equal to zero,
and from Eq.(24) we obtain thatV=V0. The steady-state
value of the controller variable isw0=V0s1−r /Rd+e0r /R
and the corresponding fixed point of the controlled chemical
system in the whole phase space of variablesse,Q ,wd is
se0,Q0,w0d, where e0,Q0 are the steady-state solutions of
the free chemical system. Linearizing Eqs.(18) and (23)
about this fixed point, one can obtain the stability conditions.
Figure 8(a) shows the eigenvalues of the saddle fixed point
se0,Q0,w0d=s0.0,0.1666,−12.7776d taken at the voltage
V0=63.888, as functions of the control gaink. For k.k0
<2.97, the saddle steady state of the free systems becomes
stable due to introduced feedback control. This result of a
linear theory is confirmed by direct integration of nonlinear
Eqs.(18) and(23). Figures 8(b) and 8(c) show the dynamics
of the current and perturbation, respectively, fork=0.02. At
the moment of switching on the controlt= tc<93 the initial
condition for the controller iswstcd= ẽstcd. Note that the pa-
rameterr is chosen not equal toR (r =60 andR=50). Al-
though an effective potentialẽ does not coincide with the
real potentiale, the stabilization of the fixed point is still
possible.

C. Stabilization using the current as a control signal

The controller described in the preceding paragraph is
based on reconstruction of the potentiale and implementa-
tion of a negative feedback to this variable. Now we consider
another controller that does not require any reconstructions
of dynamic variables and is particularly convenient for ex-
perimental implementation. We take the observableistd as a

FIG. 8. Stabilizing a saddle steady state of the chemical system
using the potential as a control signal.(a) Eigenvalues of the con-
trolled chemical system as functions of the control gaink. (b) and
(c) The dynamics of the current and perturbation, respectively. In
(b) and(c), the feedback perturbation is switched on at the moment
t= tc=93. The parameters of the controller arelc=0.02,r =60, and
k=3.9.
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control signal, then transform it by an adaptive dynamic con-
troller and feed back the output to the control parameterVstd.
Specifically, we define an adaptive controller by the differ-
ential equation

dw

dt
= lcsw − id, s26d

wherew is a dynamic variable of the controller andlc is a
characteristic parameter. Then we feed back the control per-
turbationdV=ksi −wd to the input voltageV,

V = V0 + dV = V0 + ksi − wd, s27d

wherek is the control gain. Substituting this expression in
Eq. (20) and solving it with respect to an unknown current,
we obtaini =sV0−e−kwd / sR−kd. Then from Eq.(27) we get
the following expression for the voltage:

V = V0 + k
V0 − e− wR

R− k
. s28d

We see that voltage perturbation is singular fork=R. The
controlled chemical system is defined by the differential
equations(18) and(26), and algebraic expressions(19), (20),
and (28). This controller, as well as that considered before,
does not change the steady-state solutions of the free chemi-
cal system. Whenever the controller attains the steady state,
dw/dt=0, the voltage perturbationdV=ksi −wd vanishes.
The steady-state value of the controller variable coincides
with the steady-state value of the current of the unperturbed
system,w0= i0=sV0−e0d /R. Thus the fixed point of the con-
trolled chemical system in the whole phase space of vari-
ablesse,Q ,wd is se0,Q0, i0d. Linearizing Eqs.(18) and (26)
about this fixed point, one can obtain the dependence of its
eigenvalues on the control gaink. For the unstable spiral
se0,Q0, i0d=s−1.7074,0.4521,1.3119d, taken at the voltage
V0=63.888, this dependence is shown in Fig. 9(a). For
k.k0<46.2, the initially unstable spiral becomes stable.
Figures 9(b) and 9(c) show the results of a nonlinear analy-
sis. The dynamics of the current and perturbation are ob-
tained by direct integration of a nonlinear system of Eqs.
(18) and (26). At the moment of switching on the controlt
= tc=90, the initial condition for the controller is taken to be
equal to the current,wstcd= istcd. Again, the current of the
controlled chemical system asymptotically converges to the
unperturbed steady-state valuei0 and the perturbation van-
ishes.

To stabilize the unstable spiral, we used a stable controller
with the negative parameterlc=−0.01. Figure 10 shows
similar results of stabilizing the saddle pointse0,Q0, i0d
=s0.0,0.0166,1.27778d taken at the same voltageV0

=63.888. However, now an unstable controller with the posi-
tive parameterlc=0.01 has been used.

Note that the controller considered in this subsection has
only one adjustable parameterlc, while the controller based
on reconstruction of the potentiale has two adjustable pa-
rameters,lc and r. Thus this controller is more convenient
for experimental implementation.

D. Restriction of perturbation and basins of attraction

The linear stability of a fixed point of dynamical system
guarantees its stabilization only for initial conditions that are
close to the fixed point. Important questions arise concerning
what is the basin of attraction of a linearly stable fixed point
in the phase space of nonlinear system and how to control
the size of this basin. These questions are especially signifi-

FIG. 9. Stabilizing an unstable spiral of the chemical system
using the current as a control signal.(a) Eigenvalues of the con-
trolled chemical system as functions of the control gaink. (b) and
(c) The dynamics of the current and perturbation, respectively. In
(b) and(c), the feedback perturbation is switched on at the moment
t= tc=90. The parameters of the controller arelc=−0.01 andk
=49.9.

FIG. 10. The same as in Fig. 9 but for the saddle fixed point
controlled by an unstable controller with the parameterlc=0.01.
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cant from an experimental point of view. Generally, there is
no analytical approach to answer these questions. The basins
of attraction can be obtained numerically by direct integra-
tion of the underlying differential equations for different val-
ues of initial conditions. We performed such an analysis for
the chemical system in the case when the current is used as a
control signal. The basin of attraction in these,Qd phase
plane for the stabilized saddle fixed point is presented in Fig.
11(a). The initial condition for the controller is taken equal to
the initial value of the current,ws0d= is0d=fV0−es0dg /R. We
see that only a small part of the limit cycle resides in the
basin of attraction of the saddle point. This means that the
control will not always be successful if we try to switch the
system behavior from a regime of limit cycle oscillations to
a saddle steady state. We succeed in our intention only if we
switch on a control at a proper moment when the phase of
limit cycle oscillations is in the basin of attraction of the
saddle steady state. If the control is switched on at an im-
proper moment, the feedback perturbation increases rapidly
and the system runs far away from the saddle point and limit
cycle. A natural way to avoid such runaways is to restrict the
perturbation.

We analyzed the system behavior under the following al-
gorithm of the restriction. When the absolute value of the
perturbationudVu reaches some maximumdVmax, we zero the
perturbation by changing the state of the controller. Lettm be
the moment when the perturbation reaches the maximum of
the allowable amplitude,udVstmdu=dVmax. At this moment we
change the state of the controller setting the variablew equal
to the current,wstmd= istmd. From Eq.(27) it follows that the
perturbation at this moment turns to zerodVstmd=0. Figures
11(b)–11(d) show an evolution of the basin of attraction
when varying the parameterdVmax. For sufficiently small
dVmax, the basin of attraction becomes rather large so that the
limit cycle totally resides in the basin of attraction[Fig.
11(d)]. In this case the system behavior can be changed from
periodic limit cycle oscillations to a saddle steady state by

switching on the control at any moment independently of the
phase of oscillations. Thus the constrained perturbations can
essentially improve the control of the dynamical system in a
real experiment.

In a similar manner, we analyzed the basin of attraction
for the spiral fixed point. The analysis shows that this basin
is rather large[similar to that presented in Fig. 11(d)] even
without restriction of the perturbation. The different sizes of
attraction basins for the spiral and saddle fixed points are
probably related to different controllers used for the stabili-
zation. For the saddle fixed point, we used the unstable con-
troller, while the spiral is stabilized with the stable one. The
unstable controller increases the probability of runaway that
can be avoided with a restriction on the perturbation. The
stable controller does not introduce any additional instabili-
ties to the system and the restriction of the perturbation is not
essential.

E. Experiment

Laboratory experiments have been carried out with nickel
dissolution to verify the applicability of the proposed con-
trollers. A standard electrochemical cell consisting of a
nickel working electrode (1 mm diam), a
Hg/Hg2SO4/K2SO4 reference electrode, and a Pt mesh
counterelectrode was used. The current of the electrode is
measured with a zero resistance ammeter, and the potential
of the electrode is controlled with a Keithley Adwin Pro
online controller system connected to the potentiostat. The
data acquisition and control frequency was 200 Hz, larger
than the inherent frequency of the oscillationss,1 Hzd.

The experimental parameters(concentration of sulfuric
acid 4.5 M, added external resistance 602V, circuit poten-
tial, V0) have been optimized to show similar dynamics to
those of the simulations. AtV0=1.240 V, periodic oscilla-
tions and a low-current, stable steady state are seen.(At a
higher potential, aboutV0=1.270 V, the oscillations disap-
pear with finite amplitude and infinite period characteristic of
a saddle loop bifurcation.) In this parameter region, the
model predicts the existence of two additional unstable
steady states, namely a high current unstable focus inside the
limit cycle and a saddle point between the lower stable and
the higher unstable one.

The stabilization of these latter two steady states has been
performed by implementing the two above-described control
techniques. Figure 12 shows successful stabilization of a
saddle steady state by using the potential as a control signal,
when the the control algorithm is described by Eqs.(23) and
(24). As soon as the control is turned on, the system ap-
proaches the saddle point. After turning the control off, the
system returns to the original limit cycle. The control is not
perfect; the perturbations decay to a nonzero value. Small
offset of the perturbations was always observed using the
potential as observable. This method also requires a small
enough value of restrictiondVmax<50 mV. At largedVmax
(e.g., 100–200 mV) the offset can also be large, and success-
ful control is difficult to obtain.

Better results have been obtained using the current as an
observable, i.e., with the algorithm based on Eqs.(26) and

FIG. 11. Basins of attraction of the stabilized saddle steady state
of the chemical system(a) without restriction of the perturbation,
and for restricted perturbation with different values ofdVmax: (b)
100, (c) 50, and(d) 25. The solid line, as well as in Fig. 7, repre-
sents the limit cycle. The circles, triangles, and squares denote the
spiral, saddle, and node, respectively.
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(27). Figure 13 shows results similar to those presented in
Fig. 12, but obtained with the latter control algorithm. The
control is achieved without an apparent offset, and is not
sensitive to the choice ofdVmax.

The same control algorithm has been applied to stabilize
the unstable focus inside the limit cycle. This has been
achieved by changing only the sign of the parameterlc, thus
converting the unstable controller into the stable controller.
The results of the stabilization of the coexisting unstable
focus are shown in Fig. 14.

The robustness of the control algorithm enabled us to sta-
bilize unstable steady states in the whole parameter region of
interest. By mapping the stable and unstable phase objects,
we managed to visualize bifurcations from experimental
data. In Fig. 15, the stable steady states and limit cycles are

shown with the stabilized unstable states. At lower potentials
[Fig. 15(a)], there is only a stable limit cycle and an unstable
focus. As the potential is increased[Fig. 15(b)], new steady
states(the saddle and the stable node) occur in the low-
current region via a saddle node bifurcation. With further

FIG. 12. Control of a saddle point using the potential as a con-
trol signal. Control algorithm is described by Eqs.(23) and(24). (a)
Dynamics of the currenti. (b) Dynamics of the perturbationdV. (c)
Dynamics of the controller variablew. V0=1.24 V, r =602V, k
=200,lc=0.1 s−1, dVmax=50 mV.

FIG. 13. The same as in Fig. 12 but for the control technique
based on Eqs.(26) and (27), i.e., the current is used as a control
signal.k=800V, lc=0.1 s−1, dVmax=200 mV.

FIG. 14. Stabilization of the coexisting unstable focus by chang-
ing the sign of the parameterlc. All the parameters are the same as
in Fig. 13, exceptlc, which here is equal to −0.1 s−1.

FIG. 15. Experimentally reconstructed phase portraits of differ-
ent steady states(circle: high current unstable state, square: low-
current stable state, triangle: saddle point) and the limit cycles
(solid lines) at different circuit potentialsV0: (a) 1.200 V, (b)
1.220 V, (c) 1.260 V, (d) 1.270 V, (e) 1.380 V, (f) 1.410 V.
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increase in the potential[Fig. 15(c)], the saddle point ap-
proaches the limit cycle; the limit cycle disappears with the
collision of the saddle point[Fig. 15(d)], resulting in a
saddle-loop(homoclinic) bifurcation. At larger potentials, the
saddle approaches the upper steady state and disappears
through another saddle node bifurcation. At large potentials
[Fig. 3(f)], only one stable steady state exists. These phase
portraits are in good qualitative agreement with the model
results presented in Fig. 7. This implies that the control al-
gorithm is a useful tool in experiments for reconstructing
phase portraits of stable and unstable objects.

V. CONCLUSIONS

In this paper, we have considered a simple adaptive dy-
namic controller for stabilizing unknown unstable steady
states of dynamical systems. It is similar to the delayed feed-
back controller, however the delay line is replaced with the
low-pass filter. The controller is reference-free; it does not
require knowledge of either the position of the fixed point in
the phase space or the exact dynamical laws. The controller
automatically finds and stabilizes the unstable fixed point in
the phase space. Whenever the stabilization is attained, the
feedback perturbation vanishes and there is no power dissi-
pated in the feedback loop. The controller based on a con-
ventional low-pass filter has a topological limitation similar

to that of a delayed feedback controller; it cannot stabilize
unstable steady states with an odd number of real positive
eigenvalues. To overcome this limitation, we use an unstable
low-pass filter that can stabilize saddle-type steady states of
dynamical systems.

The efficiency of the adaptive controller is demonstrated
for several models, namely a pendulum driven with a con-
stant torque, the Lorenz system, and the electrochemical os-
cillator. The analysis of the basin of attraction of the stabi-
lized fixed point shows that this basin can be essentially
enlarged by a restriction of the feedback perturbation. With
the method, both direct and indirect variables can be used for
control; in the electrochemical example explored here, the
use of the current, the indirect variable, was more efficient.

The experiments with the electrochemical nickel dissolu-
tion system confirm the robustness of the adaptive controller
and demonstrate its capability of stabilizing unknown steady
states in systems with unknown dynamical laws. Using this
controller, we managed to reconstruct the phase portraits of
the system directly from experimental data and detect vari-
ous bifurcations that appear in the system when the control
parameter is varied.
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